首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24866篇
  免费   207篇
  国内免费   926篇
测绘学   1433篇
大气科学   2035篇
地球物理   4603篇
地质学   11750篇
海洋学   1058篇
天文学   1704篇
综合类   2161篇
自然地理   1255篇
  2023年   3篇
  2022年   7篇
  2021年   10篇
  2020年   11篇
  2019年   11篇
  2018年   4778篇
  2017年   4047篇
  2016年   2607篇
  2015年   252篇
  2014年   109篇
  2013年   74篇
  2012年   1004篇
  2011年   2762篇
  2010年   2038篇
  2009年   2344篇
  2008年   1911篇
  2007年   2385篇
  2006年   85篇
  2005年   212篇
  2004年   415篇
  2003年   422篇
  2002年   256篇
  2001年   53篇
  2000年   53篇
  1999年   19篇
  1998年   24篇
  1997年   10篇
  1996年   8篇
  1995年   8篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1981年   23篇
  1980年   21篇
  1976年   7篇
  1938年   1篇
  1895年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
In this paper we have studied the anisotropic Kantowski-Sachs, locally rotationally symmetric (LRS) Bianchi type-I and LRS Bianchi type-III geometries filled with dark energy and one dimensional cosmic string in the Saez-Ballester theory of gravitation. To get physically valid solution we take hybrid expansion law of the average scale factor which is a product of power and exponential type of functions that results in time dependent deceleration parameter (\(q\)). The equation of state parameter of dark energy (\(\omega _{\mathit{de}}\)) has been discussed and we have observed that for the three models it crosses the phantom divide line (\(\omega _{\mathit{de}} = -1\)) and shows quintom like behavior. The density of dark energy (\(\rho _{\mathit{de}}\)) is an increasing function of redshift and remains positive throughout the evolution of the universe for the three models. Moreover in Kantowski-Sachs and LRS Bianchi type-I geometries the dark energy density dominates the string tension density (\(\lambda \)) and proper density (\(\rho \)) throughout the evolution of the universe. The physical and geometrical aspects of the statefinder parameters (\(r,s\)), squared speed of sound (\(v_{s}^{2} \)) and \(\omega _{\mathit{de}}\)\(\omega ^{\prime }_{\mathit{de}}\) plane are also discussed.  相似文献   
22.
Using the 2016 Mercury transit of the Sun, we characterize on orbit spatial point spread functions (PSFs) for the Near- (NUV) and Far- (FUV) Ultra-Violet spectrograph channels of NASA’s Interface Region Imaging Spectrograph (IRIS). A semi-blind Richardson–Lucy deconvolution method is used to estimate PSFs for each channel. Corresponding estimates of Modulation Transfer Functions (MTFs) indicate resolution of 2.47 cycles/arcsec in the NUV channel near 2796 Å and 2.55 cycles/arcsec near 2814 Å. In the short (\({\approx}\,1336~\mathring{\mathrm{A}}\)) and long (\({\approx}\,1394~\mathring{\mathrm{A}}\)) wavelength FUV channels, our MTFs show pixel-limited resolution (3.0 cycles/arcsec). The PSF estimates perform well under deconvolution, removing or significantly reducing instrument artifacts in the Mercury transit spectra. The usefulness of the PSFs is demonstrated in a case study of an isolated explosive event. PSF estimates and deconvolution routines are provided through a SolarSoft module.  相似文献   
23.
We have classified a sample of 37,492 objects from SDSS into QSOs, galaxies and stars using photometric data over five wave bands (u, g, r, i and z) and UV GALEX data over two wave bands (near-UV and far-UV) based on a template fitting method. The advantage of this method of classification is that it does not require any spectroscopic data and hence the objects for which spectroscopic data is not available can also be studied using this technique. In this study, we have found that our method is consistent by spectroscopic methods given that their UV information is available. Our study shows that the UV colours are especially important for separating quasars and stars, as well as spiral and starburst galaxies. Thus it is evident that the UV bands play a crucial role in the classification and characterization of astronomical objects that emit over a wide range of wavelengths, but especially for those that are bright at UV. We have achieved the efficiency of 89% for the QSOs, 63% for the galaxies and 84% for the stars. This classification is also found to be in agreement with the emission line diagnostic diagrams.  相似文献   
24.
25.
The Northern Qaidam Basin is located at the northeastern part of the Qinghai-Tibetan Plateau. It contains very thick Cenozoic terrestrial clastic sediments, which records the formation of the northern Qaidam Basin due to compressional deformation during the Indo-Asian collision. In this paper, we used detrital apatite fission-track thermochronology, including 4 sandstones and 2 conglomerates samples from the Lulehe section, to reveal the Cenozoic evolution of the northern Qaidam Basin. Fission-track dating indicated the source region of the Lulehe section has experienced important cooling and uplifting in the Late Cretaceous (at ~85.1 Ma and ~65 Ma) and the Eocene (~52 Ma), respectively. The AFT age distribution on the section suggested that the provenance of Lulehe section sediments were mainly derived from the south Qilian Shan (Qilian Mountains) and Altun Shan (Altun Mountains), and two significantly provenance changes may occur at 43.4-46.1 Ma and ~37.8 Ma, respectively. The results may have strong constrains on the Cenozoic deformation and tectonic evolution of the northern Qaidam Basin and Qinghai-Tibet Plateau.  相似文献   
26.
The penetration depth of torpedo anchor in two-layered soil bed was experimentally investigated. A total of 177 experimental data were obtained in laboratory by varying the undrained shear strength of the two-layered soil and the thickness of the top soil layer. The geometric parameters of the anchor and the soil properties (the liquid limit, plastic limit, specific gravity, undrained shear strength, density, and water content) were measured. Based on the energy analysis and present test data, an empirical formula to predict the penetration depth of torpedo anchor in two-layered soil bed was proposed. The proposed formula was extensively validated by laboratory and field data of previous researchers. The results were in good agreement with those obtained for two-layered and single-layered soil bed. Finally, a sensitivity analysis on the parameters in the formula was performed.  相似文献   
27.
Global research progress on coastal flooding was studied using a bibliometric evaluation of publications listed in the Web of Science extended scientific citation index. There was substantial growth in coastal flooding research output, with increasing publications, a higher collaboration index, and more references during the 1995–2016 period. The USA has taken a dominant position in coastal flooding research, with the US Geological Survey leading the publications ranking. Research collaborations at institutional scales have become more important than those at global scales. International collaborative publications consistently drew more citations than those from a single country. Furthermore, coastal flooding research included combinations of multi-disciplinary categories, including ‘Geology' and ‘Environmental Sciences Ecology'. The most important coastal flooding research sites were wetlands and estuaries. While numerical modeling and 3 S(Remote sensing, RS; Geography information systems, GIS; Global positioning systems, GPS) technology were the most commonly used methods for studying coastal flooding, Lidar gained in popularity. The vulnerability and adaptation of coastal environments, their resilience after flooding, and ecosystem services function showed increases in interest.  相似文献   
28.
In this paper, we have studied the magnetized quark matter (QM) and strange quark matter (SQM) distributions in the presence of \(f(R,T)\) gravity in the background of Friedmann-Lemaître-Robertson-Walker (FLRW) metric. To get exact solutions of modified field equations we have used \(f(R,T ) = R + 2 f(T)\) model given by Harko et al. with two different parametrization of geometrical parameters i.e. the parametrization of the deceleration parameter \(q \), and the scale factor \(a \) in hybrid expansion form. Also, we have obtained Einstein Static Universe (ESU) solutions for QM and SQM distributions in \(f(R,T)\) gravity and General Relativity (GR). All models in \(f(R,T)\) gravity and GR for FRW and ESU Universes with QM also SQM distributions, we get zero magnetic field. These results agree with the solutions of Akta? and Aygün in \(f(R,T)\) gravity. However, we have also discussed the physical consequences of our obtained models.  相似文献   
29.
In this paper, we analyze higher-dimensional spherical perfect fluid collapse in \(f(R,T)\) theory for minimally coupled models. We use Darmois junction conditions by taking Lemaître-Tolman-Bondi geometry as an interior region and Schwarzschild metric as an exterior spacetime. The solution of field equations is obtained for constant scalar curvature. We determine mass in two regions of the collapsing object and discuss the formation of apparent horizons. We conclude that modified curvature term tends to slow down the collapse rate.  相似文献   
30.
Support Vector Machine (SVM) is a popular data mining technique, and it has been widely applied in astronomical tasks, especially in stellar spectra classification. Since SVM doesn’t take the data distribution into consideration, and therefore, its classification efficiencies can’t be greatly improved. Meanwhile, SVM ignores the internal information of the training dataset, such as the within-class structure and between-class structure. In view of this, we propose a new classification algorithm-SVM based on Within-Class Scatter and Between-Class Scatter (WBS-SVM) in this paper. WBS-SVM tries to find an optimal hyperplane to separate two classes. The difference is that it incorporates minimum within-class scatter and maximum between-class scatter in Linear Discriminant Analysis (LDA) into SVM. These two scatters represent the distributions of the training dataset, and the optimization of WBS-SVM ensures the samples in the same class are as close as possible and the samples in different classes are as far as possible. Experiments on the K-, F-, G-type stellar spectra from Sloan Digital Sky Survey (SDSS), Data Release 8 show that our proposed WBS-SVM can greatly improve the classification accuracies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号